References for specific models and features of Environ

Cite Environ

Other references on related methods and algorithms

G. Fisicaro, L. Genovese, O. Andreussi, N. Marzari and S. Goedecker, "A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments", J. Chem. Phys. 144, 014103 (2016), http://dx.doi.org/10.1063/1.4939125.


I. Timrov, O. Andreussi, A. Biancardi, N. Marzari and S. Baroni, “Self-consistent continuum solvation for optical absorption of complex molecular systems in solution”,  J. Chem. Phys. 142, 034111 (2015), ​http://dx.doi.org/10.1063/1.4905604 .

O. Andreussi and N. Marzari, “Electrostatics of solvated systems in periodic boundary conditions”, Phys. Rev. B 90, 245101 (2014), http://dx.doi.org/10.1103/PhysRevB.90.245101.

C. Dupont, O. Andreussi and N. Marzari, “Self-consistent continuum solvation (SCCS): The case of charged systems”, J. Chem. Phys. 139, 214110 (2013), http://dx.doi.org/10.1063/1.4832475.

O. Andreussi, I. Dabo and N. Marzari, “Revised self-consistent continuum solvation in electronic structure calculations”, J. Chem. Phys. 136, 064102 (2012), http://dx.doi.org/10.1063/1.3676407​​.

Please cite the following reference when using the Environ module for a scientific publication: 


O. Andreussi, I. Dabo and N. Marzari, “Revised self-consistent continuum solvation in electronic structure calculations”, 

J. Chem. Phys. 136, 064102 (2012), http://dx.doi.org/10.1063/1.3676407​​.

L. Sementa, O. Andreussi, W.A. Goddardt and A. Fortunelli, “Catalytic activity of Pt38 in the oxygen reduction reaction from first-principles simulations”, Catal. Sci. Technol. 6, 6901 (2016), http://dx.doi.org/10.1039/C6CY00750C


M. Montemore, O. Andreussi, and J. Medlin, “Hydrocarbon adsorption in an aqueous environment: A computational study of alkyls on Cu(111)”, J. Chem. Phys. 145, 074702 (2016), http://dx.doi.org/10.1063/1.4961027


A. Fortunelli, W.A. Goddard, Y. Sha, T.H. Yu, L. Sementa, G. Barcaro and O. Andreussi, “Dramatic Increase in the Oxygen Reduction Reaction for Platinum Cathodes from Tuning the Solvent Dielectric Constant”, Angew. Chem. Int. Ed. 53, 1 (2014), http://dx.doi.org/10.1002/anie.201403264.

G. La Penna, C. Hureau, O. Andreussi and P. Faller, “Identifying, by First-Principles Simulations, Cu[Amyloid-beta] Species Making Fenton-Type Reactions in Alzheimer’s Disease”, J. Phys. Chem. B 117, 16455 (2013), http://dx.doi.org/10.1021/jp410046w.

J. L. Fattebert and F. Gygi, "Density functional theory for efficient ab initio molecular dynamics simulation in solution", J. Comput. Chem. 23, 662 (2002), http://dx.doi.org/10.1002/jcc.10069.


J. L. Fattebert and F. Gygi, "First-principles molecular dynamics simulations in a continuum solvent", Int. J. Quantum Chem. 93, 139 (2003), http://dx.doi.org/10.1002/qua.10548.


M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, "Electronic-Enthalpy Functional for Finite Systems Under Pressure", Phys. Rev. Lett. 94, 145501 (2005), http://doi.org/10.1103/PhysRevLett.94.145501.


D. A. Scherlis, J. L. Fattebert, F. Gygi, M. Cococcioni, and N. Marzari, "A unified electrostatic and cavitation model for first-principles molecular dynamics in solution", J. Chem. Phys. 124, 074103 (2006), http://dx.doi.org/10.1063/1.2168456


I. Dabo, B. Kozinsky, N. E. Singh-Miller, and N. Marzari, "Electrostatics in periodic boundary conditions and real-space corrections" Phys. Rev. B 77, 115139 (2008) https://doi.org/10.1103/PhysRevB.77.115139 and Phys. Rev. B 84, 159910(E), (2011), https://doi.org/10.1103/PhysRevB.84.159910.


I. Dabo, E. Cancès, Y. L. Li,and N. Marzari, "Towards First-principles Electrochemistry", https://arxiv.org/abs/0901.0096 (2009).


I. Dabo, N. Bonnet, Y. Li and N. Marzari, "Ab-initio Electrochemical Properties of Electrode Surfaces", in Fuel Cell Science: Theory, Fundamentals and Bio-Catalysis, A. Wiecowski and J. Norskov Eds., John Wiley and Co. (2011).


Applications of the Environ module